首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22140篇
  免费   1621篇
  国内免费   3102篇
安全科学   2731篇
废物处理   804篇
环保管理   4044篇
综合类   11333篇
基础理论   2367篇
环境理论   54篇
污染及防治   1515篇
评价与监测   1131篇
社会与环境   1767篇
灾害及防治   1117篇
  2024年   43篇
  2023年   243篇
  2022年   426篇
  2021年   601篇
  2020年   617篇
  2019年   554篇
  2018年   510篇
  2017年   736篇
  2016年   857篇
  2015年   881篇
  2014年   1074篇
  2013年   1315篇
  2012年   1495篇
  2011年   1654篇
  2010年   1178篇
  2009年   1247篇
  2008年   1038篇
  2007年   1453篇
  2006年   1513篇
  2005年   1222篇
  2004年   1006篇
  2003年   1115篇
  2002年   920篇
  2001年   769篇
  2000年   728篇
  1999年   661篇
  1998年   510篇
  1997年   406篇
  1996年   350篇
  1995年   323篇
  1994年   295篇
  1993年   249篇
  1992年   191篇
  1991年   138篇
  1990年   101篇
  1989年   59篇
  1988年   50篇
  1987年   31篇
  1986年   33篇
  1985年   51篇
  1984年   26篇
  1983年   29篇
  1982年   22篇
  1981年   22篇
  1980年   19篇
  1979年   22篇
  1978年   10篇
  1977年   20篇
  1973年   13篇
  1971年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
亚热带稻田土壤碳氮磷生态化学计量学特征   总被引:3,自引:1,他引:2  
为了解稻田土壤中是否存在稳定的土壤有机碳(C)、氮(N)和磷(P)比值,基于亚热带区110个水稻土剖面和587个发生层的土壤调查数据库,在区域尺度上分析了典型水稻土C∶N∶P比值的生态化学计量学特征,并应用相关分析和冗余分析,研究水稻土C∶N∶P比值与土壤-环境因子(地形和母质、土壤发生层、土壤类型和土壤理化性质)的关系.结果显示,亚热带区稻田土壤C∶N、C∶P和N∶P的剖面加权平均值分别为12. 6、49和3. 9,C∶N∶P为38∶3. 2∶1.不同母质起源、不同土壤亚类和不同发生层的水稻土C∶N变异相对较小;但C∶P和N∶P的变异很大,两者均值也远低于全球(186和13. 1)和中国土壤(136和9. 3)的C∶P和N∶P的平均水平.尽管稻田土壤剖面的C∶N∶P相对不稳定,但由于稻田表土生物与环境相互作用强烈,表土C∶N相对稳定(14. 2).这反映长期水耕熟化作用下,稻田表土中C和N仍存在紧密的耦合作用.然而,在稻田土壤剖面上,C∶P和N∶P并不稳定,SOC与全P含量、全N与全P含量也无显著相关性,表明环境变化可能导致土壤C∶N∶P解耦.地形、土壤质地、氧化铁和容重是调控稻田土壤剖面C∶N∶P的关键土壤环境因子.  相似文献   
92.
大气二次污染物是新疆独山子区大气污染物的重要组成部分,研究大气中二次组分的转化过程对区域大气污染治理有着重要意义.对新疆独山子区2015年9月至2016年7月采集到的样品进行水溶性组分分析.结果表明,水溶性无机离子(TWSIs)表现出与PM_(2.5)一致的季节变化,为冬季(67.86μg·m~(-3))秋季(13.77μg·m~(-3))春季(10.09μg·m~(-3))夏季(4.85μg·m~(-3));冬季二次无机离子(NH~+_4、SO~(2-)_4和NO~-_3)占TWSIs的98%;结合气溶胶热力学模型(E-AIM)探讨独山子区大气颗粒污染物中颗粒相含水量以及颗粒酸碱性;表明独山子区颗粒物呈酸性,年均原位pH为0.81,其中冬季样品的pH(2.93)值最高;颗粒含水季节变化为冬季(331.32μg·m~(-3))秋季(5.91μg·m~(-3))春季(5.46μg·m~(-3))夏季(1.62μg·m~(-3));年均氮氧化率(NOR)和硫氧化率(SOR)分别为0.13和0.47,表明区域污染物存在二次转化;进一步分析表明颗粒相中的硫酸盐质量浓度受到颗粒含水量和颗粒酸碱度的影响较为明显;高的颗粒相含水条件下区域硝酸盐的形成主要以非均相反应为主.  相似文献   
93.
全程自养颗粒污泥快速启动及混合营养型脱氮性能分析   总被引:2,自引:2,他引:0  
在连续流条件下,基于颗粒污泥全程自养脱氮(CANON)工艺的快速启动和混合营养条件下高效脱氮,是CANON工程应用的重要环节.本研究在气提内循环反应器(AIR)中,以老化的CANON颗粒污泥经机械破碎至0.3 mm作为种泥,实现混合营养型单级颗粒污泥同步脱氮除碳.启动26 d,通过控制DO,系统出现稳定的部分硝化,再缩短HRT提升氨氮负荷至5.65 kg ·(m3 ·d)-1,促进颗粒化和厌氧氨氧化;第68 d,总氮去除率达到58%之后,进水加入有机物,C/N从0提升到0.25和0.5,促进AOB、AMX和异养微生物的协同,氨氮去除率达95%,总氮去除率达85%,COD去除率达80%左右.COD浓度增加,能较好地抑制Nitrospira菌属等NOB的活性,q(NH4+-N)和q(TN)稳定在0.4 g ·(g ·h)-1和0.34 g ·(g ·h)-1,q(NO3--N)约为0.02 g ·(g ·h)-1.采用MiSeq高通量测序对微生物多样性分析,表明有机物对污泥中NitrosomomasCandidutus_Kuenenia丰度未产生显著影响,增加了Candidutus_Brocadia菌属以及具有反硝化功能Denitratisoma等菌属的丰度.这对于快速启动连续流CANON颗粒污泥工艺处理低C/N比废水提供思路.  相似文献   
94.
降水空间异质性对非点源关键源区识别面积变化的影响   总被引:3,自引:2,他引:1  
针对地形起伏和降水空间差异较大的农业区非点源污染问题,基于SWAT模型评估了阿什河流域在异质性降水和均匀降水两种情景下总氮、总磷关键源区空间变化规律,统计了两种情景下识别的关键源区面积变化,并分析其与降水特征参数的关系.结果表明,降水量一定时,两种情景下识别的总氮、总磷关键源区面积变化趋势大致相同,且总磷关键源区面积不易受降水空间异质性的影响,但总氮关键源区面积却明显受到其影响.对各年份总氮和总磷关键源区面积与降水特征参数的相关分析表明,总磷关键源区面积与当年降水量呈显著正相关,而总氮关键源区面积却与前一年降水量呈显著正相关.研究结果对进一步探讨降水这一重要驱动因子的不确定性对非点源污染关键源区的影响,以及农业非点源污染的治理具有重要意义.  相似文献   
95.
基于不同废污泥源的短程反硝化快速启动及稳定性   总被引:1,自引:1,他引:0  
张星星  王超超  王垚  徐乐中  吴鹏 《环境科学》2020,41(8):3715-3724
为探究不同废污泥源快速启动短程反硝化和实现稳定NO_2~--N积累的可行性,在3个完全相同的SBR反应器(S1、S2和S3)分别接种:实验室城市污水反硝化除磷系统排泥、城市污水厂剩余污泥及河涌底泥,比较其短程反硝化启动快慢和NO_2~--N积累特性,考察系统短程反硝化活性和NO_3~--N→NO_2~--N转化性能,并从微生物学角度分析反应器功能菌群特征.结果表明,在乙酸钠为唯一碳源、高碱度和适宜COD/NO_3~--N比进水条件下,3个SBR短程反硝化反应器在短时间内均能够成功启动,系统平均NO_3~--N→NO_2~--N转化率为S1 S2 S3(75. 92% 73. 36% 69. 90%).同时发现持续低温条件下S1和S2呈现不同程度的短程反硝化性能恶化趋势,但S3能够稳定维持良好NO_2~--N积累性能.微生物高通量测序表明,变形菌门和拟杆菌门居PD系统主导地位,3个短程反硝化反应器NO_2~--N积累关键功能菌属Thauera属丰度差异明显:S3 S1 S2(25. 09% 4. 71% 3. 60%),表明S3具备稳定高效的NO_2~--N积累性能,同时高丰度Thauera属可能是维持低温短程反硝化活性的重要原因.  相似文献   
96.
为研究柳州市核心区大气污染物浓度时空变化规律与气象因素之间的关系,统计分析了2018年全年研究区内6个自动监测站点PM_(2.5)、PM_(10)、SO_2、NO_2、O_3和CO的浓度监测数据和气象站气象数据,并对28次超标日污染物来源进行了解析.结果显示:①核心区颗粒污染物污染较为严重,且以PM_(2.5)为主的细颗粒污染物仍为柳州市主要的大气污染物;各污染物月均浓度季节差异显著,除NO_2外柳州大气污染物浓度下降明显,指示柳州市多项节能减排综合整治措施成效显著;PM_(2.5)、PM_(10)、CO受早晚高峰期影响,浓度日变化均呈双峰型;NO_2在不同季节峰型不同,作为O_3前体物其浓度日变化与O_3相反,呈现"早峰午谷"的变化趋势.②通过对污染物浓度插值发现,由于核心区主要工商业区位于西部且处于主导风向下风向,故PM_(2.5)和SO_2浓度西北高、东南低,PM_(10)、NO_2和CO浓度西南高、东北低;核心区东部的山区为O_3生成带来大量前体物,使O_3浓度东南高、西北低.③由于气候特征,核心区春、夏季主要气象因素均为降水量;秋季的主要气象因素是风速,风速与污染物的负相关关系表明了风的扩散效应;冬季大部分污染物与气象因素的相关性不显著,表明人为因素对污染物的影响大于气象因素;核心区大气污染物主要来源于局地排放和区域传输,且南北主导风向对大气污染影响最大.④HYSPLIT模型结果指示柳州超标日大气污染物主要来自于珠三角地区,且陆源颗粒物浓度普遍比海洋源高,来自南部的远距离输送气流颗粒物含量最低,表明远距离输送为影响颗粒物传播的主要原因.  相似文献   
97.
基于腔衰减相移光谱法设计了一套二氧化氮在线分析仪,通过优化测量参数,该仪器可长期稳定运行,其时间分辨率为60 s,检出限为0.191 ppb,在0~300 ppb范围内,NO2气体浓度与相位正切信号值具有较好的二次拟合关系,R2为0.9995.另外,该仪器在泰安站进行了长期外场观测,并与改装后的进口商品化仪器PKU-Thermo 42i-TL进行比对实验,结果表明,两者的测量结果一致性较好,R2=0.9811,表明其具有良好的运行稳定性和测定结果准确性,适用于环境大气二氧化氮浓度的在线监测.外场观测结果表明,春季泰安站二氧化氮浓度均值为12.39 ppb,有明显日变化规律.  相似文献   
98.
基于福建三明499户农户的实地调查数据,用倾向得分匹配法测算了生态公益林现金直接补偿和岗位性补偿对农户的增收效应,结果表明:现金直接补偿和岗位性补偿对生态保护和农户增收都是正效应。现金直接补偿对农户增收效应不显著,而岗位性补偿对农户家庭总收入和家庭人均收入的净效应分别达55.4%和57%。进一步研究发现,两种补偿方式对贫困户和非贫困户的增收效应也不尽相同,其中现金直接补偿不利于贫困户增收,而岗位性补偿对不同收入的农户都具有正向显著增收效应。此外,从生态公益林的根本使命出发,可以发现现金直接补偿和岗位性补偿对生态保护的净效应也存在较大差异。故此,科学规划生态补偿方式和补偿标准是实现生态保护和农户增收双重效应的根源所在。  相似文献   
99.
利用Aura卫星搭载的臭氧观测仪(OMI)反演的对流层NO2柱密度数据,分析了自2005年以来粤港澳大湾区(GBA)对流层NO2柱密度的空间分布特征、时间变化趋势及其影响因素.研究结果表明GBA对流层NO2柱密度从2005~2018年呈减少的趋势,每年递减约为2.8%.小波系数显示时间演化过程中存在9个月的主振荡周期,冬季浓度较高,夏季较低.人为排放和各种自然因素,导致了GBA对流层NO2柱浓度月变化在时间和空间上存在明显差异,最小值和最大值分别出现在6和12月,多年平均值分别为3.9665×1015和12.3423×1015molec/cm2.NO2在空间分布上呈现明显的空间分异特征,冬季12月最明显.NO2污染严重的高值区主要出现在中部地区,如广州市、佛山市和中山市,最大的对流层NO2柱密度可达18.8306×1015molec/cm2,大约是周边地区的3 倍,且高污染区域向四周逐渐扩散,连成一片.低值区主要在北部的肇庆市和东部的惠州市,多年平均的对流层NO2柱密度约为7.1400×1015molec/cm2.对流层NO2柱密度的增长率在不同区域的变化趋势呈现明显的差异,变化范围为-15×1015~6×1015molec/cm2,增长率百分比范围为-65%~65%.出现增长的地区主要是肇庆市北部和惠州市东部的低值区;对流层NO2出现明显减少的区域集中在中部的高值区,减少量最大的地区为广州市、佛山市和中山市交界处.  相似文献   
100.
模拟废印刷线路板(WPCB)的热拆解过程,分析热拆解过程中的挥发性有机物(VOCs)组分;利用真实溶剂似导体屏蔽(COSMO-RS)模型对浓度较高的污染物进行量子力学模拟,研究离子液体(ILs)组成单元对目标污染物溶解度的影响差异,分析溶解过程中主导分子间作用力类型,确定优选吸收剂;测定不同溶剂进行溶解性,验证模型适用性.结果表明:①乙酸乙酯和环戊酮是浓度较高的VOCs组分,在240和250℃时浓度分别为43.1,153mg/m3和105,252mg/m3,质量百分比总和分别为76.3%和67.3%.②高表面屏蔽电荷密度分布峰、长烷基链阴阳离子和亲电基团的存在可提高乙酸乙酯和环戊酮在ILs中的溶解度.双三氟甲磺酰基亚胺盐(NTf2-)类ILs是一类优良吸收剂.静电力和范德华力对溶解过程起主导作用.③COSMO-RS模型可定性和半定量用于预测乙酸乙酯和环戊酮的溶解度.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号